Trong bài viết này, chúng tôi sẽ chia sẻ lý thuyết và những dạng bài bác tập về phương trình lượng giác cơ bản giúp những ôn lại kỹ năng để sẵn sàng hành trang thật kỹ cho những kỳ thi đạt kết qua cao nhé


Lý thuyết phương trình lượng giác cơ phiên bản thường gặp2. Phương trình cos x = cos α, cos x = a (2)Các dạng bài bác tập về phương trình lượng giác

Lý thuyết phương trình lượng giác cơ bạn dạng thường gặp

1. Phương trình sin x = sin α, sin x = a (1)

Nếu |a|>1 thì phương trình vô nghiệm.

Bạn đang xem: Pt lượng giác cơ bản

Nếu |a|≤1 thì chọn cung α thế nào cho sinα=a. Khi ấy (1)

*


Các trường hợp quánh biệt:

sin x = 0 ⇔ x = kπ (k ∈ Z)

sin x =1 ⇔ x = π/2 + k2π (k ∈ Z)

sin x = -1 ⇔ x = -π/2 + k2π (k ∈ Z)

sin x = ±1 ⇔ sin2x = 1 ⇔ cos2x = 0 ⇔ cosx = 0 ⇔ x = π/2 + kπ (k ∈ Z)

2. Phương trình cos x = cos α, cos x = a (2)

Nếu |a|>1 thì phương trình vô nghiệm.

Nếu |a|≤1 thì chọn cung α làm sao cho cosα = a.

Khi đó (2) ⇔ cosx = cosα ⇔ x = ± α + k2π (k ∈ Z)

b. Cosx = a điều kiện -1 ≤ a ≤ 1

cosx = a ⇔ x = ± arccosa + k2π (k ∈ Z)

c. Cosu = cosv ⇔ cosu = cos( π – v)

d. Cosu = sinv ⇔ cosu = cos(π/2 – v)

e. Cosu = – sinv ⇔ cosu = cos(π/2 + v)

Các ngôi trường hợp đặc biệt:

*

3. Phương trình tung x = tan α, tung x = a (3)

Chọn cung α sao cho tanα = a. Khi ấy (3)

*

Các ngôi trường hợp sệt biệt:

tanx = 0 ⇔ x = kπ (k ∈ Z)

tanx = ±1 ⇔ x = ± π/4 + kπ (k ∈ Z)

4. Phương trình cot x = cot α, cot x = a (4)

Chọn cung α làm thế nào cho cotα = a.

Khi kia (3) cotx = cotα ⇔ x = α + kπ (k ∈ Z)

cotx = a ⇔ x = arccota + kπ (k ∈ Z)

Các trường hợp đặc biệt:

cotx = 0 ⇔ x = π/2 + kπ (k ∈ Z)

cotx = ±1 ⇔ x = ± π/4 + kπ (k ∈ Z)

5. Phương trình bậc nhất đối với 1 hàm con số giác

Dạng asinx + b; acosx + b = 0; atanx + b = 0; acotx+ b = 0 (a, b ∈ Ζ, a ≠ 0)

Cách giải:

Đưa về phương trình cơ bản, lấy ví dụ như asinx + b = 0 ⇔ sinx = -b/a

6. Phương trình bậc hai đối với một hàm số lượng giác

Dạng asin2x + bsinx + c = 0 (a, b ∈ Ζ, a ≠ 0)

Phương pháp

Đặt ẩn phụ t, rồi giải phương trình bậc hai so với t.

Ví dụ: Giải phương trình asin2x + bsinx + c = 0

Đặt t = sinx (-1≤ t ≤1) ta gồm phương trình at2 + bt + c = 0

Lưu ý khi đặt t = sinx hoặc t = cosx thì đề nghị có đk -1≤ t ≤1

7. Một số trong những điều nên chú ý:

a) khi giải phương trình tất cả chứa các hàm số tang, cotang, tất cả mẫu số hoặc đựng căn bậc chẵn, thì nhất thiết buộc phải đặt đk để phương trình xác định

*

b) Khi kiếm được nghiệm cần kiểm tra điều kiện. Ta hay được dùng một trong những cách sau để đánh giá điều kiện:

Kiểm tra trực tiếp bằng cách thay quý giá của x vào biểu thức điều kiện.Dùng đường tròn lượng giác để màn biểu diễn nghiệmGiải các phương trình vô định.

c) sử dụng MTCT để thử lại những đáp án trắc nghiệm

Các dạng bài tập về phương trình lượng giác

Dạng 1: Giải phương trình lượng giác cơ bản

Phương pháp: Dùng những công thức nghiệm tương xứng với mỗi phương trình

Ví dụ 1: Giải các phương trình lượng giác sau:

a) sinx = sin(π/6). C) tanx – 1 = 0

b) 2cosx = 1. D) cotx = tan2x.

Lời giải

a) sin⁡x = sin⁡π/6

*

b) 2cosx = 1 ⇔ cosx = ½ ⇔ x = ± π/3 + k2π (k ∈ Z)

c) tan⁡x = 1 ⇔ cos⁡x = π/4 + kπ (k ∈ Z)

d) cot⁡x = tan⁡2x

⇔cotx = cot(π/2 – 2x)

⇔ x = π/2 – 2x + kπ

⇔ x = π/6 + kπ/3 (k ∈ Z)

Ví dụ 2: Giải các phương trình lượng giác sau:

a) cos2 x – sin2x =0.

b) 2sin(2x – 40º) = √3

Lời giải

a) cos2x – sin2x=0 ⇔ cos2x – 2sin⁡x.cos⁡x = 0

⇔ cos⁡x (cos⁡x – 2sin⁡x )=0

*

b) 2 sin⁡(2x-40º )=√3

⇔ sin⁡(2x-40º )=√3/2

*

Ví dụ 3: Giải những phương trình sau: (√3-1)sinx = 2sin2x.

*

Dạng 2: Phương trình số 1 có một hàm vị giác

Phương pháp: Đưa về phương trình cơ bản, lấy ví dụ như asinx + b = 0 ⇔ sinx = -b/a

Ví dụ: Giải phương trình sau:

*

Dạng 3: Phương trình bậc hai tất cả một hàm lượng giác 

Phương pháp

Phương trình bậc hai so với một hàm con số giác là phương trình gồm dạng :

a.f2(x) + b.f(x) + c = 0 cùng với f(x) = sinu(x) hoặc f(x) = cosu(x), tanu(x), cotu(x).

Cách giải:

Đặt t = f(x) ta gồm phương trình : at2 + bt +c = 0

Giải phương trình này ta tìm được t, từ đó tìm kiếm được x

Khi để t = sinu(x) hoặc t = cosu(x), ta có điều kiện: -1 ≤ t ≤ 1

Ví dụ: sin2x +2sinx – 3 = 0

*

Ví dụ 2: 1 + sin2x + cosx + sinx = 0

Lời giải:

⇔ 1 + 2 sin⁡x cos⁡x + 2(cos⁡x+sin⁡x ) = 0

⇔ cos2⁡x + sin2⁡x + 2 sin⁡xcos⁡x + 2 (cos⁡x+sin⁡x )=0

⇔ (sin⁡x + cos⁡x)2 + 2 (cos⁡x+sin⁡x )=0

*

Dạng 4: Phương trình bậc nhất theo sinx cùng cosx

Xét phương trình asinx + bcosx = c (1) cùng với a, b là các số thực không giống 0.

*

*

Ví dụ: Giải phương trình sau: cos2x – sin2x = 0.

*

Dạng 5: Phương trình lượng giác đối xứng, phản nghịch đối xứng

Phương pháp

Phương trình đối xứng là phương trình tất cả dạng:

a(sinx + cosx) + bsinxcosx + c = 0 (3)

Phương pháp giải:

Để giải phương trình trên ta thực hiện phép đặt ẩn phụ:

*

Thay vào (3) ta được phương trình bậc nhị theo t.

Ngoài ra họ còn chạm mặt phương trình phản đối xứng gồm dạng:

a(sinx – cosx) + bsinxcosx + c = 0 (4)

Để giải phương trình này ta cũng đặt

*

Thay vào (4) ta giành được phương trình bậc nhị theo t.

Xem thêm: Cách Tính Điểm Thi Cấp 3 Hà Nội 2019 Có Gì Khác? Cách Tính Điểm Thi Vào Lớp 10 Năm 2019

Ví dụ 1: Giải phương trình sau: 2(sinx + cosx) + 3sin2x = 2.

*

Hy vọng cùng với những kiến thức và kỹ năng mà cửa hàng chúng tôi vừa share có thể giúp chúng ta hệ thống lại kỹ năng và kiến thức về phương trình lượng giác cơ phiên bản từ đó áp dụng vào làm bài xích tập mau lẹ và đúng chuẩn nhé