Hằng đẳng thứcHệ quả hằng đẳng thứcCác hằng đẳng thức khácNguyên tắc để ghi nhớ 7 hằng đẳng thứcCác dạng bài toán áp dụng 7 hằng đẳng thức

Hằng đẳng thức

Trong toán học, hằng đẳng thức nghĩa là 1 loạt các đẳng thức có liên quan tới nhau hợp lại thành một hằng đẳng thức. Các hằng đẳng thức được sử dụng nhiều trong các môn toán của học sinh cấp II và cấp III

Bảy hằng đẳng thức đáng nhớ

Nhắc đến các hằng đẳng thức quan trong thì phải nhắc đến bảy hằng đẳng thức sau:

*

Những đẳng thức này được sử dụng thường xuyên trong các bài toán liên quan đến giải phương trình, nhân chia các đa thức, biến đổi biểu thức tại cấp học trung học cơ sở và trung học phổ thông. Bảy hằng đẳng thức đáng nhớ giúp giải nhanh những bài toán phân tích đa thức thành nhân tử. Ngoài ra, người ta đã suy ra được các hằng đẳng thức mở rộng liên quan đến các hằng đẳng thức trên:

*

Hệ quả hằng đẳng thức

Các hằng đẳng thức hệ quả của 7 hằng đẳng thức trên.

Bạn đang xem: Chứng minh hằng đẳng thức

Hệ quả với hằng đẳng thức bậc 2
*
Hệ quả với hằng đẳng thức bậc 3
*
Hệ quả tổng quát
*
Một số hệ quả khác của hằng đẳng thức
*

* Với n là số lẻ thuộc N (tập hợp số tự nhiên)

Nhị thức Newton
*

Với a,b thuộc tập hợp số thực (R), n thuộc tập hợp số tự nhiên dương (N*)

Các hằng đẳng thức khác

Hằng đẳng thức Roy
*
Đẳng thức về tính chất bắc cầu

*
.

Từ đẳng thức trên có thể suy ra các hằng đẳng thức sau:

*
*
*
*
Hằng đẳng thức về căn bậc hai

Hằng đẳng thức này dùng để rút gọn hoặc tính toán các căn bậc hai:

*

Và còn rất nhiều các hằng đẳng thức hữu ích khác.

Công dụng

Các hằng đẳng thức giúp chúng ta tính toán nhanh gọn hơn và vận dụng các phép tính một cách thuận tiện, hiệu quả hơn.

1. Bình phương của một tổng

Với A, B là các biểu thức tùy ý, ta có: ( A + B )2 = A2 + 2AB + B2.

Giải thích: Bình phương của một tổng sẽ bằng bình phương của số thứ nhất cộng hai lần tích của số thứ nhất và số thứ hai, sau đó cộng với bình phương của số thứ hai.

Ví dụ:a) Tính ( a + 3 )2.b) Viết biểu thức x2+ 4x + 4 dưới dạng bình phương của một tổng.

Hướng dẫn:

a) Ta có: ( a + 3 )2= a2+ 2.a.3 + 32 = a2 + 6a + 9.b) Ta có x2+ 4x + 4 = x2+ 2.x.2 + 22 = ( x + 2 )2.

2. Bình phương của một hiệu

Với A, B là các biểu thức tùy ý, ta có: ( A – B )2 = A2 – 2AB + B2.

Giải thích: Bình phương của một hiệu sẽ bằng bình phương của số thứ nhất trừ đi hai lần tích của số thứ nhất và số thứ hai, sau đó cộng với bình phương của số thứ hai.

*
3. Hiệu hai bình phương

Với A, B là các biểu thức tùy ý, ta có: A2 – B2 = ( A – B )( A + B ).

Giải thích: Hiệu của hai bình phương của hai số sẽ bằng hiệu của hai số đó nhân với tổng của hai số đó. 

*
4. Lập phương của một tổng

Với A, B là các biểu thức tùy ý, ta có: ( A + B )3 = A3 + 3A2B + 3AB2 + B3.

Giải thích: Lập phương của một tổng của hai số sẽ bằng lập phương của số thứ nhất cộng với ba lần tích của bình phương số thứ nhất nhân cho số thứ hai, cộng với ba lần tích của số thứ nhất nhân với bình phương của số thứ hai, rồi sau đó cộng với lập phương của số thứ hai.

*
5. Lập phương của một hiệu

Với A, B là các biểu thức tùy ý, ta có: ( A – B )3 = A3 – 3A2B + 3AB2 – B3.

Giải thích: Lập phương của một hiệu của hai số sẽ bằng lập phương của số thứ nhất trừ đi ba lần tích của bình phương số thứ nhất nhân cho số thứ hai, cộng với ba lần tích của số thứ nhất nhân với bình phương của số thứ hai, rồi sau đó trừ đi lập phương của số thứ hai.

Ví dụ :a) Tính ( 2x – 1 )3.b) Viết biểu thức x3– 3x2y + 3xy2– y3dưới dạng lập phương của một hiệu.

Hướng dẫn:a) Ta có: ( 2x – 1 )3

= ( 2x )3– 3.( 2x )2.1 + 3( 2x ).12– 13

= 8x3– 12x2+ 6x – 1b) Ta có : x3– 3x2y + 3xy2– y3

= ( x )3– 3.x2.y + 3.x. y2– y3

= ( x – y )3

6. Tổng hai lập phương

Với A, B là các biểu thức tùy ý, ta có: A3 + B3 = ( A + B )( A2 – AB + B2 ).

Giải thích: Tổng của hai lập phương của hai số sẽ bằng tổng của số thứ nhất cộng với số thứ hai, sau đó nhân với bình phương thiếu của tổng số thứ nhất và số thứ hai.

Chú ý: Ta quy ước A2– AB + B2là bình phương thiếu của hiệu A – B.

Ví dụ:a) Tính 33+ 43.b) Viết biểu thức ( x + 1 )( x2– x + 1 ) dưới dạng tổng hai lập phương.

Hướng dẫn:

a) Ta có: 33+ 43= ( 3 + 4 )( 32 – 3.4 + 42 ) = 7.13 = 91.b) Ta có: ( x + 1 )( x2– x + 1 ) = x3+ 13 = x3 + 1.

7. Hiệu hai lập phương

Với A, B là các biểu thức tùy ý, ta có: A3 – B3 = ( A – B )( A2 + AB + B2 ).

Giải thích: Hiệu của hai lập phương của hai số sẽ bằng hiệu của số thứ nhất trừ đi số thứ hai, sau đó nhân với bình phương thiếu của tổng số thứ nhất và số thứ hai.

Chú ý: Ta quy ước A2+ AB + B2là bình phương thiếu của tổng A + B.

Ví dụ:a) Tính 63– 43.b) Viết biểu thức ( x – 2y )( x2+ 2xy + 4y2) dưới dạng hiệu hai lập phương

Hướng dẫn:a) Ta có: 63– 43= ( 6 – 4 )( 62 + 6.4 + 42 ) = 2.76 = 152.b) Ta có : ( x – 2y )( x2+ 2xy + 4y2) = ( x )3 – ( 2y )3 = x3 – 8y3.

Xem thêm: Hoạt Động Ngoại Khóa Là Gì, Tầm Quan Trọng Của Những Hoạt Động Ngoại Khoá

Nguyên tắc để ghi nhớ 7 hằng đẳng thức

Thường xuyênôn tập kiến thức về hằng đẳng thức

Bất kỳ kiến thức nào dù ở lĩnh vực nào, đặc biệt là các hằng đẳng thức đáng nhớ, nếu muốn ghi nhớ kiến thức đó như là tài sản vốn có của mình thì học sinh phải thường xuyên vận dụng nó hàng ngày, sự rèn luyện sẽ hình thành cho các bạn những thói quen tốt. Học sinh nên học các đẳng thức mỗi ngày, vận dụng chúng thành thạo vào những bài toán trước tiên là đơn giản sau đó mới phức tạp dần lên. Vận dụng thường xuyên còn giúp các bạn rèn được tính kiên trì, tìm tòi cũng như khám khá được công thức mới mà mình chưa biết một cách thích thú. Không có tri thức nào là mãi mãi nếu các bạn không thường xuyên trau dồi nó, cũng như phát triển nó. Hằng đẳng thức như một kiến thức vốn có mà khoa học đã chứng minh cụ thể tính đúng đắn của nó, việc học sinh làm là dùng nó theo cách tiếp thu của bản thân một cách chính xác, vì nó phục vụ rất nhiều trong quá trình làm bài của các bạn, đặc biệt những bài tập khó, những bài tập đánh giá sự thông minh của học sinh trong các kỳ thi hay bài kiểm tra.