Các dạng bài tập Nguyên hàm chọn lọc, có đáp án

Với Các dạng bài tập Nguyên hàm chọn lọc, có đáp án Toán lớp 12 tổng hợp các dạng bài tập, trên 200 bài tập trắc nghiệm có lời giải chi tiết với đầy đủ phương pháp giải, ví dụ minh họa sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Nguyên hàm từ đó đạt điểm cao trong bài thi môn Toán lớp 12.

Bạn đang xem: Bài tập về nguyên hàm có đáp án

*

Bài tập trắc nghiệm

Cách tìm nguyên hàm của hàm số

A. Phương pháp giải & Ví dụ

I. NGUYÊN HÀM VÀ TÍNH CHẤT

1. Nguyên hàm

Định nghĩa: Cho hàm số f(x) xác định trên K (K là khoảng, đoạn hay nửa khoảng). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F"(x) = f(x) với mọi x ∈ K.

Định lí:

1) Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì với mỗi hằng số C, hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K.

2) Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C, với C là một hằng số.

Do đó F(x)+C, C ∈ R là họ tất cả các nguyên hàm của f(x) trên K. Ký hiệu ∫f(x)dx = F(x) + C.

2. Tính chất của nguyên hàm

Tính chất 1: (∫f(x)dx)" = f(x) và ∫f"(x)dx = f(x) + C

Tính chất 2: ∫kf(x)dx = k∫f(x)dx với k là hằng số khác 0.

Tính chất 3:dx = ∫f(x)dx ± ∫g(x)dx

3. Sự tồn tại của nguyên hàm

Định lí: Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.

4. Bảng nguyên hàm của một số hàm số sơ cấp

Nguyên hàm của hàm số sơ cấpNguyên hàm của hàm số hợp (u = u(x)
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

II. PHƯƠNG PHÁP TÍNH NGUYÊN HÀM

Phương pháp dùng định nghĩa vá tính chất

+ Biến đổi các hàm số dưới dấu nguyên hàm về dạng tổng, hiệu của các biểu thức chứa x.

+ Đưa các mỗi biểu thức chứa x về dạng cơ bản có trong bảng nguyên hàm.

+ Áp dụng các công thức nguyên hàm trong bảng nguyên hàm cơ bản.

Ví dụ minh họa

Bài 1: Tìm nguyên hàm của hàm số

*

*

Hướng dẫn:

*

*

Bài 2: Tìm nguyên hàm của hàm số

*

*

Hướng dẫn:

*

*

Tìm nguyên hàm bằng phương pháp đổi biến số

A. Phương pháp giải & Ví dụ

STTDạng tích phânCách đặtĐặc điểm nhận dạng
1
*
t = f(x)Biểu thức dưới mẫu
2
*
t = t(x)Biểu thức ở phần số mũ
3
*
t = t(x)Biểu thức trong dấu ngoặc
4
*
*
Căn thức
5
*
t = lnxdx/x đi kèm biểu thức theo lnx
6
*
t = sinxcosx dx đi kèm biểu thức theo sinx
7
*
t = cosxsinx dx đi kèm biểu thức theo cosx
8
*
t = tanx
*
đi kèm biểu thức theo tanx
9
*
t = cotx
*
đi kèm biểu thức theo cotx
10
*
t = eaxeax dx đi kèm biểu thức theo eax
Đôi khi thay cách đặt t = t(x) bởi t = m.t(x) + n ta sẽ biến đổi dễ dàng hơn.

Xem thêm: Giải Vở Bài Tập Toán Lớp 6 Tập 1 Full Các Trang # Gbt Toán Lớp 6 Học Kỳ 1

Ví dụ minh họa

Bài 1: Tìm các họ nguyên hàm sau đây:

*
*

Hướng dẫn:

*
*
*
*

Bài 2: Tìm các họ nguyên hàm sau đây:

*
*

Hướng dẫn:

*
*
*
*

Bài 3: Tìm các họ nguyên hàm sau đây:

*
*

Hướng dẫn:

*
*

Cách tìm nguyên hàm bằng phương pháp từng phần

A. Phương pháp giải & Ví dụ

Với bài toán tìm nguyên hàm của các hàm số dạng tích (hoặc thương) của hai hàm số “khác lớp hàm” ta thường sử dụng phương pháp nguyên hàm từng phần theo công thức

*

Dưới đây là một số trường hợp thường gặp như thế (với P(x) là một đa thức theo ẩn x)

*
*

Ví dụ minh họa

Bài 1: Tìm họ nguyên hàm của hàm số

a) ∫xsinxdx

b) ∫ex sinx dx

Hướng dẫn:

a) Xét ∫xsinxdx

*

Theo công thức tính nguyên hàm từng phần, ta có

F(x) = ∫xsinxdx = -xcosx+∫cosxdx = -xcosx+sinx+C

b) Xét F(x) = ∫ex sinx dx

*

F(x) = ex sinx-∫ex cosx dx = ex sinx-G(x) (1)

Với G(x) = ∫ex cosx dx

*

G(x) = ex cosx+∫ex sinx dx+C"=ex cosx+F(x)+C" (2)

Từ (1) và (2) ta có F(x) = ex sinx-ex cosx - F(x) - C"

*

Ghi nhớ: Gặp ∫emx+n.sin(ax+b)dx hoặc ∫emx+n.cos(ax+b)dx ta luôn thực hiện phương pháp nguyên hàm từng phần 2 lần liên tiếp.

Bài 2: Tìm họ nguyên hàm của hàm số

a) ∫x.2x dx

b) ∫(x2-1) ex dx

Hướng dẫn:

a) Xét ∫x.2x dx

*

b)

*

Suy ra ∫f(x)dx = (x2-1) ex - ∫2x.ex dx

*

Suy ra ∫f(x)dx = (x2-1) ex - ∫2x.ex dx = (x2-1) ex-(2x.ex - ∫2.ex dx)