Những hằng đẳng thức đáng nhớ chắc thân quen gì với các bạn . Bây giờ Kiến đã nói kỹ hơn về 7 hằng đẳng thức quan trọng đặc biệt : bình phương của một tổng, bình phương của một hiệu, hiệu của nhì bình phương, lập phương của một tổng, lập phương của một hiệu, tổng nhì lập phương và sau cuối là hiệu nhị lập phương. Các bạn cùng tham khảo nhé.

Bạn đang xem: A mũ 3 b mũ 3

A. 7 hằng đẳng thức xứng đáng nhớ

1. Bình phương của một tổng

Với A, B là các biểu thức tùy ý, ta có: ( A + B )2= A2+ 2AB + B2.

Ví dụ:

a) Tính ( a + 3 )2.b) Viết biểu thức x2+ 4x + 4 dưới dạng bình phương của một tổng.

Hướng dẫn:

a) Ta có: ( a + 3 )2= a2+ 2.a.3 + 32= a2+ 6a + 9.b) Ta gồm x2+ 4x + 4 = x2+ 2.x.2 + 22= ( x + 2 )2.

2. Bình phương của một hiệu

Với A, B là những biểu thức tùy ý, ta có: ( A - B )2= A2- 2AB + B2.

*

3. Hiệu hai bình phương

Với A, B là các biểu thức tùy ý, ta có: A2- B2= ( A - B )( A + B ).

*

4. Lập phương của một tổng

Với A, B là các biểu thức tùy ý, ta có: ( A + B )3= A3+ 3A2B + 3AB2+ B3.

*

5. Lập phương của một hiệu.

Với A, B là những biểu thức tùy ý, ta có: ( A - B )3= A3- 3A2B + 3AB2- B3.

Ví dụ :

a) Tính ( 2x - 1 )3.b) Viết biểu thức x3- 3x2y + 3xy2- y3dưới dạng lập phương của một hiệu.

Hướng dẫn:

a) Ta có: ( 2x - 1 )3

= ( 2x )3- 3.( 2x )2.1 + 3( 2x ).12- 13

= 8x3- 12x2+ 6x - 1

b) Ta có : x3- 3x2y + 3xy2- y3

= ( x )3- 3.x2.y + 3.x. Y2- y3

= ( x - y )3

6. Tổng nhì lập phương

Với A, B là những biểu thức tùy ý, ta có: A3+ B3= ( A + B )( A2- AB + B2).

Chú ý: Ta quy ước A2- AB + B2là bình phương thiếu hụt của hiệu A - B.

Ví dụ:

a) Tính 33+ 43.b) Viết biểu thức ( x + 1 )( x2- x + 1 ) dưới dạng tổng hai lập phương.

Hướng dẫn:

a) Ta có: 33+ 43= ( 3 + 4 )( 32- 3.4 + 42) = 7.13 = 91.b) Ta có: ( x + 1 )( x2- x + 1 ) = x3+ 13= x3+ 1.

7. Hiệu hai lập phương

Với A, B là những biểu thức tùy ý, ta có: A3- B3= ( A - B )( A2+ AB + B2).

Chú ý: Ta quy cầu A2+ AB + B2là bình phương thiếu thốn của tổng A + B.

Ví dụ:

a) Tính 63- 43.b) Viết biểu thức ( x - 2y )( x2+ 2xy + 4y2) dưới dạng hiệu nhì lập phương

Hướng dẫn:

a) Ta có: 63- 43= ( 6 - 4 )( 62+ 6.4 + 42) = 2.76 = 152.b) Ta tất cả : ( x - 2y )( x2+ 2xy + 4y2) = ( x )3- ( 2y )3= x3- 8y3.

B. Bài xích tập trường đoản cú luyện về hằng đẳng thức

Bài 1.Tìm x biết

a) ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.b) ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2= - 10.

Hướng dẫn:

a) Áp dụng những hằng đẳng thức ( a - b )( a2+ ab + b2) = a3- b3.

( a - b )( a + b ) = a2- b2.

Khi kia ta bao gồm ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.

⇔ x3- 33+ x( 22- x2) = 0 ⇔ x3- 27 + x( 4 - x2) = 0

⇔ x3- x3+ 4x - 27 = 0

⇔ 4x - 27 = 0

Vậy x=

*
.

Xem thêm: Bài Văn Biểu Cảm Về Loài Cây Em Yêu Cây Phượng, Cảm Nghĩ Về Loài Cây Em Yêu

b) Áp dụng hằng đẳng thức ( a - b )3= a3- 3a2b + 3ab2- b3

( a + b )3= a3+ 3a2b + 3ab2+ b3

( a - b )2= a2- 2ab + b2

Khi kia ta có: ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2= - 10.

⇔ ( x3+ 3x2+ 3x + 1 ) - ( x3- 3x2+ 3x - 1 ) - 6( x2- 2x + 1 ) = - 10

⇔ 6x2+ 2 - 6x2+ 12x - 6 = - 10

⇔ 12x = - 6

Vậy x=

*

Bài 2:Rút gọn gàng biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2

2x2+ 4xy B. – 8y2+ 4xy- 8y2 D. – 6y2+ 2xy

Hướng dẫn

Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2

A = x2– (2y)2–

A = x2– 4y2– x2+ 4xy - 4y22

A = -8y2+ 4xy

Hãy nhớ nó nhé

*

Những hằng đẳng thức xứng đáng nhớ bên trên rất quan trọng tủ kiến thức và kỹ năng của chúng ta . Thay nên các bạn hãy nghiên cứu và phân tích và ghi lưu giữ nó nhé. Phần nhiều đẳng thức đó giúp chúng ta xử lý những bài toán dễ dàng và nặng nề một cách dễ dàng, chúng ta nên làm đi làm việc lại để phiên bản thân có thể vận dụng giỏi hơn. Chúc chúng ta thành công và cần mẫn trên con phố học tập. Hẹn các bạn ở những bài bác tiếp theo